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Summary
A thermodynamic theory of materials with memory

was developed in terms of difference histories by
Coleman, The author has developed the theory in terms
of past histories. The second law of thermodynamics
in the form of the Clausius-Duhem inequality is taken
as a restriction on processes as well as on constitu-
tive equations., The Coleman-Noll approximation theory
for materials with fading memory is developed for the
thermodynamic theory.

' A parallel development éf the thermodynamic theory
and the approximation theory is carried out for fluids
with fading memory. For the zero~order approximation,
the porfect fluid, the usual classical results are
obtained, For the first-order approximation, corres-
ponding to the Newtonian fluid, the constitutive equa-
tions differ from the traditional ones because of the
possibility of certain additional terms; restrictions
are obtained on the new coefficients as well as the
classical restrictions on the usual coefficients. For
the second-order approximation some restrictions are
obtained on the material coefficients,

1, Introduction
Recently two fundamental and pioneering papers
have appeared by Coleman [1, 2] on the development of
the thermodynamics of materials with memory. Prior to
this, the mechanics of materials with memory, ignoring
thermodynamics, had been extensively developed; many
references are given in references [1, 2]. An impor-

tant development in the mechanics of materials with
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fading memory was an approximation theorem for function-
als by Coleman and Noll [3].

A natural next development was the application of
the approximation theory to the thermodynamics of mater-
ials with memory. In attempting to carry out this pro-
gram, the author found that Coleman's theory in terms
of difference histories [1, 2] was not entirely correct
(see the appendix Sect, 10 of this paper). It appeared
that the thermodynamic theory in terms of past histories
could be a valid theory, however in [2, Sect. 9] Coleman
only implies a summary of that theory. The author has
developed the thermodynamic theory in terms of past
histories in Sect, 3 of this paper. Furthermore, in
this theory the Clausius-Duhem inequality is taken as a
restriction on processes as well as on counstitutive equa-
tions. In Sect. 4 the Coleman-Noll approximation theory
for materials with memory is deve loped for the thermo-
dynamic theory of Sect. 3. The foregoing results are
specialized to fluids., The restrictions of the Clausiuse
Duhem inequality are determined for perfect fluids, linear
fluids and the second-order fluid approximation.*

2. Review of preliminaries

For the most part this section will consist of a
review of appropriate definitions and notations from
Sects, 2,3,4 and 6 of Coleman [1], “

Following Coleman [1, Sect. 2], we comtsider a

-
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body B with material points X, A thermodynamic process
«in B is descri‘.bed by eight functions of X and the time
t. me. values of these functions have the following
physical interpretations:

(1) spatial position vector x = x(X,t); here the

function % called the deformation function, describes

a motion of the body.

(2) The symmetric stress tensor T = I(X,t).

(3) The body force vector b = b(X,t), per unit
mass, exerted on B at X by the "external world",

(4) The specific internal energy € = ¢(X,t), per
unit mass.

(5) The specific entropy 1 = T(X,t), per unit mass.

(6) The local absolute temperature 8 = 0(X,t),
which is assumed to be positive: 6 >0,

(7) The heat flux vector q= 2(X,t).

(8) The heat supply r = r(X,t); this is the radi-
ation energy, per unit mass and unit time, absorbed by
B at X and furnished by the "external world".

Such a set of eight functions is called a thermo-
dynamic process if and only if it is compatible with

the law of balance of linear momentum and the law of

balance of energy:
nga-f :::c_'pdv--J' b pdv
Iav“‘ v v

J.V tr{z‘ l.}dv - J'avq'.g\x‘ da - J‘V; pdv = -.[vr pdv (2.2)

(2.1)

where the conservation of mass is given by

'[V pdv = constant (2.3)

Here p denotes the mass density; L = a;ya£ is the ve-
locity gradient; a superimposed dot denotes the material
time derivative, i.e., the derivative with respect to
t keeping X fixed; tr is the trace operator; V and dv
indicate integration over the volume occupied by the
body B and 3V and da indicate integration over the
surface of the space occupied by B.

The assumed symmetry of the stress tensor I insures

that the moment of momentum is automatically balanced,

Couple stresses, body couples, and other mechanical
interactions not included in T or b are are assumed to
be absent.

In order to specify a thermodynamic process it
suffices to prescribe the six functions XTI, 3,2,1] and 0,
The remaining functions b and r are then determined by
(2.1) and (2.2).

Here we depart somewhat from Coleman [1] and make

a new definition. We define an allowable thermodynamic

process for a body as a thermodynamic process which

satisfles the Clausius-Duhem inequaliry [51:
J.';]pdv- -J. lq.nda+J‘_];rpdv}20
v v ~

We take (2.4) as a statement of the Second Law of Thermo-

(2.4)

dynamics,
Following Coleman [1] again, it is often convenient
to identify the material point X with its position vector

X in a fixed reference configuration R and to write

x = x(X,t) (2.5)
The gradient F of x(X,t) with respect to X, i.e.,
F = E(X,t) = 3(X,t)/aK (2.6)

is the deformation gradient tensor at X (i.e., at X)

relative to the configuration R. It is well known that

E=LE te, L=Er™

~

(2.7)
It is assumed that 25.(.}5,";) is always smoothly invertible
in its first variable, i,e., that the inverse 2‘:1 of F
exists, or, equivalently, that det F # O.

Since 39/3x occurs often Coleman introduced the
abbreviation

E'anlax

~

(2.8)
The mass density p is determined by E through the equa-
tion

p = pr/Idet z'l (2.9)
where py is a positive number, constant in time and
equal to the mass density in the reference configuration

R.

The specific free energy § is defined by

¥=¢~- 97 (2.10)
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Using (2.2), (2.7} and (2.10), under appropriate smooth-
nesd assumptions the differential equation form of the
Clausius-Duhem inequality is

oy = - }+%tr{§"‘ TF) - o '61'0 9.8 20 (2.11)
where y is called the specific rate of entropy produce=
tion.

Denote any of the above functions of X and t by
p(t). The function

() =gt ~8), 0<s<wm (2.12)
is called the history of @ at X up to time t.

Next consider a function 8(t) which is determined
by cpt(s) for all values of s satisfying (2.12), that
is B(t) is a functional of cpt(s). In this paper we
shall indicate functionals by the following notation:

B(t) = £(p"(s)) (2.13)
In using (2.13) it will be understood that whenever a

function of s, in this case cpt(s), appears as the argu-
ment of a function, £, then f is to be considered a

functional of gt(s).
A material is defined by a set of constitutive

assumptions, which are restrictions on thermodynamic
processes, Following Coleman we define a simple mate-
rial as one for which

£ = £(E%(s),0%(s); g), £ = ¥,M,I,q (2.14a,b,c,d)

Following Coleman a thermodynamic process is said
to be admissible in B if it 1s compatible with (2.14)
at each point X of B and at all times t, Thus an allow-
able admissible thermodynamic process is an admissible
thermodynamic process that is allowed by the Clausius-
Duhem inequality. Coleman [1] shows that the following
is an admissible thermodynamic process: x= z'(x,t) and
9 = 9(X,t) are assigned for all t and X in B.

Coleman [1] introduces the following compact nota-
tion, We denote by A the ordered pair (F,9), where F,
is any tensor and @ any scalar:

A= (F,0) (2.15)
Let o be a scalar, the product o = Ax is defined to be

ol = (oF, a9) (2.16)

Let Ay = 5,01) and fg = (5,0,). The sum'ﬁ:} + A’ is

defined to be
N+ =(F +Fp, 0, +03) (2.17)
The scalar-maltiplication and addition so defined make
the set of all ordered pairs (2.15) a vector space of
dimension ten. An inner product « and a norm l I are
defined by
Nl = tr@E) + 66, Wi=VETL  (2.18)
if E,t(s) is the deformation gradient history and
Ot(s) is the temperature history, then At(s) defined by
AR(s) = At = 8) = (E°(s), 65(s)), 055 < = (2.19)
is called the total history or simply the history. We
define A to be
A= ACE) = AE(O) (2.20)

Using this compact notation we can rewrite (2.14) as

£ = £(A%(s);g), £ = ¥, T,0 (2.21a,b,c,d)
Introducing the generalized stress

1 - } P
L= (; 2ET -1)- (;(z DT, - 1) (2.22)

we see that by (2.18) the Clausius~Duhem inequality

(2.11) can be rewritten as

oy

where

-;+§' A-‘)log:gzo (2.23)

A= &8

It follows from (2.22) and (2.21b), (2.21c) that I is

(2.24)

given by a functional of 'I\\‘t(s) which is also a function
of 8 that is

E= ZUWG); g)

3. Thermodynamic Theory in terms of Past Histories

(2.25)

The past history A:(s) is defined by Coleman [2,
Sect. 9] as the history L\'t(s) restricted to the open
interval 0 < 8 < », that 1is,

A(s) = A5(s), 0 <8 <o (3.1)
For the time being we will assume of 'Qs_(s) only that it
have a limit at 8 = 0 and we define

A -sl_i;mo‘l‘\:(s) (3.2)
The history Qt(s) is allowed to have a jump at s = 0 so

that in general




At N 3.3)
where Q is def;.ned by (2.20).

Following Coleman [2, Sect. 9] we define a new
functional for the free energy ¥ by means of

¥(E) = ¥(AE(s); g()) = ¥(AE(s); A(E),g(t)) (3.4)
where the new functional form is indicated by ¥( ; , )
as compared with the old form ¥( ; ).

Now we can see that the time derivative of ¥ is
required for use in (2.23). Let us then proceed to
formally take the time derivative of the last term in
(3.4) and then make the assumptions required to justify
such a procedure. By definition

¥e) = ‘lim% [¥Ct + k) = ¥(t)] (3.5)

k—o
Then by (3.4) we have

HE + 1) = ARG e + 1), g(E+ 1) (3.6)
Now because of the possible jump in At(s) at s =0 as
indicated by (3.3), A(t) and E.(t) can only have derive

atives for positive k, that is

At + k) = ACE) + KA(E) +0(k), k >0  (3.7a)
'gv(t + k) = g(t) + ké‘(t) + o(k), k>0 (3.7b)

Formally we can make a Taylor series approximation to

t+k
Ar

(s), namely
2o = IMORSS S AZ(s) + o(k,8) .5
= 25s) -k, A5Ge) + olk,s) |
where we have made use of (2.19) and where o(k,s) in-
dicates that the error term depends on s as well being
small order k. Now since L\f(s) is allowed to suffer a
jump discontinuity at s = 0, then at a later instant
t + k (k >0) the function 'Q:+k(s) has a jump at s =k,
Hence the expansion (3.8) will only be meaningful for
8 >k, This restriction has to be kept in mind in the
limit as s - 0, To be consistent with the assumption
that the argument function 'Q:.+k(s) of (3.6) satisfy
(3.2) ve must assume as s - 0 that the derivative
d&:(s)/ds exist and that o(k,s) exist,
We see from (3.5), (3.6) and (3.7) that we must

assume that ¥ is differentiable in ) and g. That is,

there exist functionals BAt and dg¥ such that
$UEG); A+ 0, B) = VAL A )+
+ p¥iar(s); 4, g+ ol gD (.9
t(z}:(S); A gty = t(A:(S); A8 +
+ 3¥(U(s); 4y gr+ ol x b (3.10
where ] is an arbitrary element in the ten-dimensional
vector space and v is an arbitrary vector.

We also see from (3.5), (3.6) and (3.8) that ¥
must be differentiable in the function ‘I\\‘:(s), that is
there exists a functional 5¥% such that

VAL(s) + T(s); 4, B) = $(ALGS); A, ) +

R (3.11)
+ 6¥(AL(s); A, gIL(s)) +

o] I(s) Iy

where in order to be comsistent with (3.2) £(s) must
have a limit as s - 0, where 6y is a linear functional
of I'(s), and, | I(s) "h is a suitable norm of [(s).

As discussed by Coleman [1], we may consider a class
of materials whose memory fades gradually in time. 1In
that case a suitable norm ' L(s) ﬂh is one whose value
depends more on L(s) for small s than for large s.
Such a norm is

BYON M U: | L () "eh(s)adsf ™ (3.12)

where the influence function h(s), 0 <s < ® is a

positive, monotone~decreasing, continuous function
which goes to zero rapidly as s = ®», We summarize the
above statements concerned with differentiation with
respect to '/g,(s) as an

Assumption of fading memory. We consider a class

of simple materials for which the specific free energy
is differentiable in the past history in terms of the
norm (3.12) where the influence function decreases
rapidly to zero as s —» ®», We note especially that the
past history must have a limit as s — 0, but that it
may otherwise be badly behaved so long as the norm
(3.12) exists.

A simple material for which the above assumption
of fading memory holds will be called a viscoelastic

material.
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Now returning to the problem of evaluating (3.5),
te substitute (3.7a), (3.7b) and (3.8) into (3.6); we
then use (3.9), (3.10) and (3.11) and carry out formally

the limiting process of (3.5) and finally get
. PR t
HE) = - B (s); 4 & | S ALGs)) +
. ds . (3.13)
UGN N ) A BHUG A )t B
where the derivatives Axt), éﬂt) and hence %(t) may only
exist in the positive direction, In carrying out the
above procedure it is necessary to make a weak addition-
al assumption that¥*
1
im 3 6¥(AS(s); A(E), g(t) | o(k,8)) =0 (3.14)
ko ~r ~
We also write the entropy, stress, heat flux and
generalized-stress functionals in terms of the past
t
history Ak(s).
£=£(AL(s); A, g)s £ =h,T,0,T (3.15a,b,c,d)
Then substituting (3,13), (3.15c) and (3.15d) in
the inequality (2.23) we get
ov={Z &) & @ - vt 4 D) * A+
s oy A, g | $056)) - B aUS a5 -
~r S 3 ds~r ai‘\l’ 239044
t o
- B§Y(Ar(s); Ag)-gz20 (3.16)
Now Coleman [1, Sect, 4] has shown that at a given
material point X and time t we can arbitrarily choose
the past history é:(s) and the quantities A(t),g(t),g(t)
and be certain that there exists at least one admiss-
ible thermodynamic process corresponding to this., From
our discussion in this section, é(t) may only be defined

in the positive direction for jump histories. Also from

;3;T-ET:ET-ﬁE;§ has kindly pointed out to me that Prof-
essor V. J, Mizel and he proved in a private discussion
the following much more complete theorem regarding (3.13);
1f § satisfies (3.11) for all I(s) which obeys

lI(s)lh < wand, if one writes At(s) + I(s)=(A(s),b(s),
det A(s) #0, b(s) >0 then (3.13) holds for all A:(s)
provided that udQ:(s)/ ds"h < ® in the sense that

Ai(s) is absolutely continuous, and, the derivative
dQ:(s)/ds, which exists almost everywhere, has a finite

henorm.

our discussion it is clear that éﬂc) in the positive
direction may be chosen arbitrarily for jump histories.
Since éﬂcan be assigned arbitrarily in (3.16) with
everything else held fixed it is clear (see [1, Sect., 6]
for a detailed argument) that
Rl YOI

That is, the specific free energy § cannot be a function

(3.17)

of the temperature gradient. Thus (3.16) reduces to

o= {2 5 & » - ¥UEes D) - A

(3.18)
+ SUAEGAIT AT () - 6 a(Ab(s)iA, p) -

gz0
Since A'can be assigned arbitrarily holding every-
thing else fixed we conclude that
_ t Lt
Z=L (A(Gs); ) = BAV([&(S); i3]

We observe that the generalized stress cannot be a

(3.19)

function of the temperature gradient 8 that the gener-
alized stress is the derivative of the specific free
energy with respect to the present value of the total
history, A, and that the assumption of fading memory
must apply to the generalized stress. Next we can
assign E'the value zero independently of the other
quantities and get

%o = ¥(AL (s); S, L\:_(s) >0 (3.20)

That is, the internal dissipation o [1, Sect. 6] canmot

be negative., Then finally we must have

a(AS(s); A, ) + & < po% (3.21)
The results (3.19), (3.20) and (3.21) are similar
to those obtained by Coleman [1, Sect. 6]. The equi-
valent of our equation (3.19) is also given by Coleman
and Gurtin [6]. A jump in A‘is, according to Coleman

and Gurtin, a thermo-mechanical acceleration wave, Thus

equations (3.19) to
ials in which acceleration waves are allowed. However
for a given class of constitutive equations the allow-
ance of acceleration waves may impose intolerable

restrictions on the constitutive equations. Let us now

examine the inequality (3.18) with the assumption that

(3.21) may be said to hold for mater~-
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we shall only insist that it hold for smooth admissible

thexmdynmic processes, For smooth processes g(s) »B(t)

and é(t:) may be assigned arbitrarily, but then

A= ey A= -5 () omg
For smooth processes the result (3.17) still applies,

(3.22a,b)

Nothing further can be deduced from (3.18) in a general
way, unless we assume that the generalized-stress func-
tional I does not depend on the temperature gradient,
that is

=L U N (3.23)
In such a case we make the following deductions from the
inequality (3.18):

o' = {2l p - i) D} - A+

+ 89UEGe); Al ARG 2 0 (3.24)
a(5(e); A, g) * g < po%" (3.25)

where we shall call o' the total dissipation. Note that

(3.23), (3.24) and (3.25) also apply to adiabatic mater=-
ials (g(t) = o) with g a parameter in ¥ and to the
special case of homothermal deformations (E.(t) = 2).

We have observed that the Clausius-Duhem inequal-
ity may be taken to impose restrictions on allowable
processes as well as on constitutive equations, We find
that there must be a give and take between constitutive
equations and allowable processes: the more allowable
processes one wishes to consider the greater are the re-
strictions on the constitutive equations whereas for
more general constitutive equations one has fewer allow-
able processes,

4, Approximation Theory
We introduce the difference past history A:d(’)

defined by

INORYIORYW %.1)
We may rewrite (3.17) in the form

R VMOV ER VOIS %.2)

The form (4.2) can be written even if (4.6) below did
not hold, so that by (4.1) the form (4.2) has the pro-

perty

YUAC4(8)5 Arad) = ¥(lpq(s) = 35 AL+ 2, B (4.3)
for arbitrary Q. Further, we split (4.2) in the follow=-

ing way:
¥ bl D) + ¥ (Aog(e); A, A (4.4)

where

ol ) = WG A D, V(S AL Y
With (4.5b) and the fact that

= 0(4,5a,b)

lim A° () = O (4.6)
we are in position to apply the Coleman-Noll approxi-
mation theorem for functionals [3] to (4.4). We first
have to extend the previously postulated assumption of
fading memory by assuming that the functional ¢ is
n-times differentiable in terms of A: d(s). Then assum=
ing that g(s) is differentiable n-times at s = 0, the

Coleman-Noll approximation theorem for slow motions

yields

¥~ Yo leal) + IZ PRI G- @2, D07
where

-2 1 M6 g = DFEa (4.8)

and each term in the summation is linear in each of the
'l:l. For the n-th order approximation the summation in
(4.7) is over all sets of integers (j;,...Jyx) satisfy-
ing

1 <3 SeaeS JpSm, §) teeat Je S0 (4.9)
The asymptotic approximation sign ~ has the following
specific meaning in this article: The retardation
éa(s) of the past history A:(s) is defined by

A (8) = A5(e), 0o < <1 (4.10)

We see that as the retardation factor o — O the history

varies more and more slowly. Then the Coleman-Noll

theorem applied to (4.4) is

W05 ) = Holleold) +
(4.11)
ijl;°”+jk*11-ujk(b N)(r 1...I‘jk) + O(QP)

(j1-¢- k
where the summation is govermed by (4.9).

It follows from (4.7) that

(4.12)

31\# ~§go s M) +

3 ( jls'-'ar‘jk)
Gie. S.jl...jk A 0 (L



Analogous approximations can be written for the general-
{red-stress functional and for the heat-flow functional,
Using the property (4.3) it can be shown that the differ-
ential in (3.20) has the approximation form

BYUE(); AT AEG)) ~ 2y bolle
LT TR 2 I Teci T CLO I it

WL+

(31... S
41 J
Z}d...jktﬁp H L @l

(j1l1¢
4.13)
We note that on substituting the approximations into

{(3.18) and taking 2ll cummations to the n-th order, all
terms in (3.18) have been approximated to order (n + 1).
For the jump history results (3.19), (3.20) and

(3.21), we see, first of all, by substituting the
approximations in (3.19) that
5 U ) = Rl ),

Z:Jl...jk(él" A) - agjlvoojk(h’ A)
The approximation (4.13) must satisfy the inequality

(4.14a,b)

(3.20). The approximation for the heat flux must then
satisfy (3.21).

For the case of histories smooth at s = 0 the approx-
imations must all be substituted in (3.18) which then
must be satisfied. Note that even though we consider
smooth histories, the jump-history operator 3, may yield
non~zerc values. We now put the above results in "com=
ponent" form, that is in terms of the deformation grad-
ient tensor and the temperature, Equation (4.7) becomes

¥~ ¥%E, 9, F, 0) +
(13...4))

1...1
v AR SO OTC KE) (4. 15)
(jlto-jk)~j1--u k 1’ cer k
where the summation is over all sets of indices
(J1500053k) satisfying (4.9) and over all sets of

indices (i,,...,i}) satisfying

ip=o0,1 ;m=1,,,.,k (4.16)
and where
g = (ning d,jm FE(8) gm0 (4.17)
dim
Kjp = 0, = (-1 1ins s dm 95(8) |50 (4.18)

Each of the terms i1°°-ik
Jeee k

function, Appropriate “component" forms of (4.12),

(g;,o,,go)( ) is a k-1linear

(4.13) and the other approximation forms can be written.

5., Thermodynamics of Viscoelastic Fluids

We wish to apply the foregoing theory to visco-
elastic fluids, Purely mechanical simple fluids were
first defined and discussed by Noll [7]. The general-
ization of the constitutive equations to include thermo-
dynamics is, following Coleman [1, Sect, 13].

(5.1la,b,c,d)
£ = £(g5(s), OE(s); p(t), R(E)), £ = #,1,5q
where

Gi(s) = CE(s) - L, 5.2)

o) = EEENTE®), BiGe) = EE @@
The functionals in (5.1) are isotropic in gt(s) and
8(t).

We now define A (s) to be

A5(s) = (65(s), 0%(s)) (5.3)
and A to be ordered pair (p,0) with a scalar product
defined by

Ay 4 = p1ps t+ 9,05 (5.4)
The past history L\: (s) and the quantity A, are again

defined according to (3.1) and (3.2). Corresponding
to (3.3) we note in particular that

G = lim G1(s) # 0 = ¢t (o) (5.5)
Now

-< Gt(s)l,.o A (5.6)
the l-st Rivlin-Ericksen tensor. Thus

A=y, ® .7

The Clausius-Duhem inequality retains the form (2.23)
if the generalized stress is now defined to be
- (%5 -1 5.8)
Then in terms of past histories the constitutive
equations (5.1), can be written in the form
f=f ('I&(s), A, g), f=4%2z L q (5.9a,b,c)
We consider now modifications of the general theory

of Sect, 3 which are needed for fluids., We note in (5.2)

that &t(a) depends on the time t through the subscript t




of E:t (s) indicating the changing reference configur-
I3
ation as well as through the history superscript t, It

can be easily shown that

t+k

G e4k(8) = Coy(s) = Kz(s) + olk,s) (5.10)

where

.

E(s) = $.65. () + BT Tt (o) + ¢E (FE (5.11)

Thus {3.8) is replaced by

K7%8) = A5() = k() + o(k,0) 5.12)
where
Qe) = (a0, $050s)) (5.13)

By (5.9a) and (5.12) it follows that (3.13) is
replaced by
WE) = - SH(ATGSD; 4, g | (D) + 510
+ HAS(s)5 Ayg) + A+ BH(AL(s); Aug) ¢
It is clear that the equivale:t for fluids ofkthe
inequality (3.16) yields the result that the free energy
cannot depend on the temperature gradient 8.

Thus (3.18)

is replaced by

Sy =2-1’-Jtr T (Q:.(S); Ag)A; - n(g,’é(s); A,g)6 -
- ¥(AL(s)5A)P = Bg¥(AT(s); M)6 +
+ @Al () - Satite)ing) - g2 0
where Q .(s) is given by (5.13).

(5.15)

We now consider a history with a jump at s = 0,
t o
We may choose Qr(s), F, 9, F, @ and g independently,
However we see by (5.11) and (5.13) that {3.(s) depends
- t .
on F and F as well as on Qr(s). Since A;and p also
depend on F and iwe can deduce no relation on the
generalized stress corresponding to (3.19) of the general
theory. On the other hand, since Qr(s) does not depend
on & we can conclude that
t
1= AL (s);

A) = ~3g¥(AZ(s); A) (5.16)

We cannot get relations corresponding to (3.20) or (3.21).

For smooth histories nothing can be deduced from
(5.15) unless we assume that the generalized stress does
not depend on the temperature gradient, in which case the

only conclusions from the inequality (5.15) are

tr T (A';' )3 MA; (AL (s); MO -

¥ (e (s); 3gtAL(e);
+ 6*(‘1&(3); Atg,(s) 20

and (3.25) where now o' is given by (5.17)

Cl)nh""

p) 8+
(5.17)

6. Approximation Theory for Viscoelastic Fliuds

Basically the approximation theory of Sect. 4 applies
to viscoelastic fluids with A replaced for the most part
by A and with d&(s)/ds replaced by Q. (s). The equation
corresponding to (4.13) takes on a somewhat different

form which can be shown to be

S¥(UA (5D, A2 () ~ S ¥olhes B) - & +
* Z BA le.,.jk(A , A)(r51 S L R W
TN, o

Z (A, 1) Z (I‘Jl,,,,,mm ...,riKy
S .1

where

. 'Tt t =12
F .
+~TE e Y S LK (6.2)

&’(Hser):gr‘_"é)r

and where 'lj' is given by (4.8) and Oi is given by
i ~

d
ol 332 (s) |50 (6.3)

We will list here only the "component" form of

(6.1); the "component" forms corresponding to (4.15)

and others can be readily written down.

B¥H(EE(s), o:<s); P, 01 (s), §s°t<5>>

~tra§r$0( rsp O)Et - 69 *O(Er:or)p,g)gl

(1. 2. dy)
e L e b ) K -
1eee Ji 10 k ,
(i...4)
G by ;1" (g grspso)(K;":,...,Kik)of +
1eeedk 1ee0]
(1y...41)
+ 11--. O)Zl (K )
(j]_o--jk) jl"'jk r’p; "", jm,.-. jk
(6.4)
where
djm
M= DT L B ) g
T =T e
="‘3;nr+1+£2, A;m+§;mg1£ (6.5)
and
H.lim = Kljm (6.6)

as given by (4.18).
7. Perfect Fliud Approximation

In Sects, 7, 8 and 9 we shall investigate the




restrictions plaged on the approximate consititutive
equations for viscoelastic fluids by the Clausius-Duhem
inequality (5.17). We will assume that the generalized
stress is not a function of the temperature gradient
and we shall not study here the restrictions placed by
(3.25) on the constitutive approximation for the heat
£lux.

In terms of the retardation factor o of Sect. 4,
the approximation theory allows us to write the inequal-
ity (5.17) in the form

8c' = aga + o(a) 20 (7.1)
where

a, = %ptr Io(Ar, M)y -3%2 tr Ty (Ay> A) p -

- Tothes )8 = p¥olrs M) p -
. r oL =T ¢ £ 3.

- dg¥o Ui 1B = tr 3 Yol D (I-EE CE-CLE'E)

2 . T
*igp BT Bg¥ollesMbr = g, ¥o(Ly» 965 (7.2)
where J;, is given by
A =] - 25 1 (7.3)
3p~
From (7.1) it follows that
1 '
éi_.ga(Oc Y=2a,20 (7.4)

For histories with a jump at s = 0, each of the
‘T -T L t _-1" . ® -
variables A,(J;~FF CoCo E E),s 5y0,Ar, 3T, 5r, 0] can
be varied independently, so that the inequality (7.4)

yields the conditions

5,5 B L + trdg bole, N EE TG, + CEETD = 0
(7.5)

%“’ To(hrsA) = = pP3pio(ArsA) (7.6)
TollrsA) = = dgo(hrsA) 7.m
£rdg Yo Ay, M3 = 0 (7.8)
trag ¥o(Ay,A) = 0 (7.9)

3g, Yo(4r:A) = 0 (7.10)

From (7.10) we conclude that y, 1s not a function of 6,
From (7.8) and (7.9) we conclude that §, cannot be a
function of Gr. Therefore we have

¥~ ¥ ()

Since T, (A.,A) cannot vanish we conclude from (7.5)

(7.11)

that it must be isotropic and thus from (7.6) we have

T~ = p*3pk(N)L (7.12)
From (7.7) we have
T ~ = dgto(N) (7.13)

We note that the results (7.11), (7.12) and (7.13)
define the classical perfect fluid. Also these results
do not depend on the jump (which may be a shock wave as
well as an acceleration wave) and therefore it can easily
be verified that these results are necessary as well as
sufficient conditions that (5.17) be satisfied for

smooth histories as well as jump histories.

8, Linear Approximation

Using the results (7.11), (7.12) and (7.13), the
approximations for ¥, T and T to order n = 1 are given
below. It will be assumed that all coefficients are
functions of A, and A unless indicated otherwise.

¥ ~ ¥o(A) + A(trAl) + BO] (8.1)
I~- p"3p¥o (ML + 2 A (ExADI + pA + o0 (8.2)
N ~ - dg¥o(A) + a(tra]) + boy (8.3)
We have used the porperty that the above equations must
be isotropic in Q:.

The conditions (7.5) to (7.10) made a5 in (7.1)
vanish, Let us therefore rewrite (7.1) in the form
0! = a,0° + o(cf) 2 0 (8.4)

where

%ptr -;—X(trg)£+ wAl + aoﬁ‘}& - [a(tng) + bef}."-

a

[ @) Cexad) + (33265 p - [(aeAXtréf) + (3gB)0f -

tr[(BgIA) (tral) + (B&B)O’f](‘g - irz:'rg:_ t-gitz'lb-

[(agrA)(trg) + (agrs)of]of -

«T =T T -
- atr(y - FE 4 - AFTD + 56) (8.5)
From (8.4) it follows that
1
Y " =
lim o[3(00 )=a 20 (8.6)

We see immediately that by varying each of é; and
0:, while holding everything else fixed, we must have

A=B=0 (8.7)



Then the inequality (8.6) reduces to

L4

"1 i
a; = Eptr[ 'z-l(trg);g'-i- Héf + oo{;}g, -

- [atest)) + 0] ] 8 2 0 (8.8)

For the jump history case, that is, for acceler=-
ation vaves, A; and 0 can be varied independently of
everything else, so that it can easily be seen that all
the first-order coefficients vanish and the n = 1 case
reduces to the perfect fluid. Thus we conclude that
the iinear fiuid cannot satisfy the Clausius~Duhem
inequality for arbitrary acceleration waves, which is
the well-known result of Duhem for the classical linear
viscous fluid [5].

For the smooth history case we drop the superscript
r and we have, using 5 =4,

a, = %p[ -é]ﬂ\(t:ré1 )32+ utrg] +

+(23,;- a) 0,trh, - bO? 2 0 (8.9)

where now the coefficients are functions of A only. A

simple analysis using (7.3) ylelds the classical results

w20, x+-32-uzo (8.10)

as well as the results
3 -

bsO,(ia;-a) < %(x+§-p) (8.11)
Thus, in summary, we have for n = 1

¥~ %) (8.12)

T ~= p%3p¥0 (ML + MAY(Exdy )L + (M)A + o6y 1

(8,13)
T ~ = dg¥o(A) + a(A)erA; + b(A) O, (8.14)

with the restrictions (8.10) and (8.11). We observe
that these constitutive equations differ from the tradi-
tional constitutive equations for linear fluids because
of the possibility of the presence of the last term in
(8.13) and the last two terms in (8.14). It must be
kept in mind that (8.12),(8.13) and (8.14) is a first-
order slow motion approximation to viscoelastic fluids.
Whether or not these equatfons could represent a fluid
undergoing rapid motions is a question that remains to

be investigated, Thus these equations should be applied
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with caution to problems such as boundary-layer flow
past a semi~infinite plate or "shock structure".
Questions concerning various types of approximation to
viscoelastic flows and their respective ranges have
been discussed recently [8,9].

9. Second-order Approximation

Since the linear approximation does not sustain
acceleration waves, we consider only smooth motions
here,

From the results (8.10) and (8.11) we see by (8.9)
that a; is not identically zero. We now rewrite (8.4)
in the form

9! = a,0” + 330° + o(o®) 9.1)
For those cases where a; vanishes, that 1s A; = 0 and
9; = 0, it follows that

Lin 2,(05') = 85 20 ©.3)
We write the second-order approximation to § in the form

¥~ ¥ + £(4,,0,) + C trig + Do,

Then by (6.4) it can be seen that a; has the form

23 = B(At,0,,40,05) - Ctr(Ay - FE Ag

(9.4)

- BETR) + Dog

Since every term in g is of degree three, that is the
subscripts of the factors in each term must total three,
we can see that g vanishes when A; and @; vanish. We can
conclude that the condition (9.3) requires that
C=D=0 9.6)
and that there are no other restrictions placed by (9.3).

10. Appendix on Coleman's Difference-History Theory

The difference history A:(s) of the history At(s)
is defined by

M) = MGG + A, A= AT(0) = ACE) (10.1)
Coleman [1,2] writes for the free energy functional

ER O ERTIHONNY)
Coleman [1,(5.4)](see (10.6) below) does not use (10.2)

(10.2)

with the restriction that the functional argument vanish
at s = 0, Clearly then the right~hand side of (10.2)
should have the property

O TNVER (O W) (10.3)




.

*

for arbitrary Q.

® Now let us examine equation [1, (5.14)] which defines

the differential operator V (omitting the dependence on
8):

W((s)30) * Q= 8¥(D(s); AlQS(s)) (10.4)
where GF(s) is the constant history

Fs)=0Q 0ss<= (10.5)
The right-hand side of (10.4) is defined by [1, (5.4)]:

T ORI LT

= 1o + 8¥e):AlRE (2)) + o] o))

to.6)

where the norm || Q°(s) i, t defined by (3.12). From
(10.5) and (3.12) we have

P g1 = 2ol - odl 2 bao.n
and therefore

ol @) lly) =oclgll) (10.8)
Also by (10.5) and the property (10.3), the left~hand
side of (10.6) can be written as

¥(Is) + Q5(s)s) = W84+ Q) (10.9)
Substituting (10.8) and (10.9) in (10.6) we have

¥(I(s) + R ()5

= $(L(s)50) + 6¥(D(sD 4107 (D) + ol QFs) |
(10.10)

But by comparison with [1, (5.5)] we see that

8¥(L(s);AIQN(s)) = Pw(L(s)sp) * Q (10.11)
Now comparing (10.4) and (10.11) we see that
VH(E(8):0) = 4(L(s);0) (10.12)

That is, the differential operators V and BA are identi-
cal. The main consequence of this result in Coleman's
theory is that the generalized stress I by [1, (6.24)],
is identically zero. Of course, such a result is un-
acceptable. lLet us leave this dilemma for the moment
and turn to another point.
Let us examine equations [2, (5.61)]:
Vol - EEia+ D = V)

This equation is supposed to give the value v* of the

(10.13)

free energy corresponding to the history 'I‘\'ﬁ(s) defined

by

At*(s) -{&(0) +1,8=0

A®(s), 0<s <= (10.14)

L\f*(s) is called the jump continuation of At(s) with
jump J. Now applying the property (10.3) we see that
(10.13) reduces to
WERTOHOHY
That 1s, the free energy is unaffected by a sudden jump.

(10.15)

This is a physically unacceptable result. Equation
(10.18) was brought about by the equivalence [2,(5.5)]:

25% () = 2(e) = 15, 15(s) = 1 (10.16)
which in turn was due to the use of the norm (3.12).

In the author's opinion, the use of the norm (3.12)
for histories with a jump at s = 0 is not physically
reasonable, Furthermore, it is the use of the norm
(3.12) along with our result (10.12) that leads to the
previous deduction that the generalized stress is iden-
tically zero. Coleman's reasoning on pp. 17 and 18 of
[1], which leads to the generalized stress relation
[1, (6.24)], hinges on considering a jump in dA®(s)/ds
at 8 = 0 and the use of the norm (3.12) with such jump
histories.
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Corrigenda and Addenda to

ON THE THERMODYNAMIC AND APPROXIMATION THEORY

OF VISCOELASTIC MATERIALS
D. C. Leigh
Equation (3.8) should be replaced by

t+?s) - A(t) + ék s)A(t) + o(k-s) , o <5 <k

(1)
A (s)-kgs Ar(S) + o{k,s) , k <858 €=

Now the linear functional &y of (3.11) can be represented by an

integral:

Sy(A(); A, g|L(s)) _fv"(,éi(?), s 3 A, g -+ L(s)ds (2)
o

t — P . .
where wl(A (¢), s ; A, g) so defined is a functional over T.
~ ~r ~ —~

Then (3.13) is replaced by

PO = =85(A ()5 A, 8l S AEG) A L0 A, B - (A A+

t . t
F ) 5 AL 8 s At 3A() s AL B - &

(3
(3.16) is replaced by

- {Zutes AL ) 3wt s AL ) -

t
Foue(s); Ay gl 5 A - PGS, 05 A, ) - (AAD) -
_1 tey . o d aAE(e) - D
55 4 (A.(s) 5 A, 8 - 8 B§¢(§r(s) s A, g) - g=0

(4)




-2-

(3.18) is replaced by

T

LR PACHORY WSROI B

+
|8

+ 64(AECs) 5 Al T3 (D) = UAGS) L 05 ) - (A - A -

~

- qui) 54,8 - g20

(5)

and (3.20) is replaced by

80 = 5y(Ar(s) ; Al %—A‘;(s)) - Y)Y 053 M - (A-A) =0 (6)

s

We observe that the second term in the internal dissipation ine-uality
(6) is non-zero only if shock waves (jumps in‘é) occur in the processes
under consideration.

The remainder of § 3 is unchanged; several consequent changes
should be made t1§§ &, 5, 6 and 7;§§8 and 9 are unchanged. Actually
fron1§4-on is valid if we limit our considerations to processes in which
shocks do not occur, but acceleration waves may or may not occur as the

case may be in the paper.



